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The Boson Gas on a Cayley Tree 
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We analyze the free boson gas on a Cayley tree using two alternative methods. 
The spectrum of the lattice Laplacian on a finite tree is obtained using a direct 
iterative method for solving the associated characteristic equation and also 
using a random walk representation for the corresponding fermion lattice gas. 
The existence of the thermodynamic limit for the pressure of the boson lattice 
gas is proven and it is shown that the model exhibits boson condensation into 
the ground state. The random walk representation is also used to derive an 
expression for the Bethe approximation to the infinite-volume spectrum. This 
spectrum turns out to be continuous instead of a dense point spectrum, but 
there is still boson condensation in this approximation. 

KEY WORDS: Boson condensation; Cayley tree, random walk representa- 
tion. 

1. I N T R O D U C T I O N  

Although some progress has been made in recent years, the occurrence of 

boson  condensa t ion  in a true q u a n t u m  mechanical  model  of an interact ing 

boson  gas is still an  open problem. In  order to make progress, simplifying 

assumpt ions  have to be made. In  ref. 1, only terms in the Hami l ton i an  that  

are d iagonal  in the occupat ion  numbers  were retained, while in ref. 12, a 
lattice model  was considered with a mean-field-type Laplacian.  In  this 
article we aim to init iate a study of another  lattice model  obta ined  by 

simplifying the lattice to a Cayley tree. It  is well k n o w n  that  statistical 
mechanical  models on  a Cayley tree are often simpler to analyze than  
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models on a regular Bravais lattice and one may hope that the boson gas 
is no exception. We restrict ourselves here to a consideration of the free 
boson gas and hope to consider interacting models in a subsequent paper. 
In Section 2 we give a precise definition of the model and derive the 
finite-volume spectrum by a simple iterative procedure. In Section 3 an 
alternative derivation of the spectrum is presented using a random walk 
representation of the free fermion gas on the tree. The spectrum of the 
Hamiltonian can then be read off from the formula obtained for the finite- 
volume pressure. In this method the partition function of the fermion gas 
is written in terms of discrete-time walks on an augmented lattice, which 
can then be analyzed in terms of generating functions analogous to ref. 9. 
In Section 4 the free boson gas on the tree is analyzed. The usual boson gas 
exhibits boson condensation for dimensions d>~ 3, (v) and since the Cayley 
tree has in some sense an infinite dimension, one may expect boson con- 
densation in this lattice model as well. We shall prove that this is indeed 
the case. In fact, we first prove generalized condensation in the sense of 
Girardeau (4) in Section 4, and then in Section 5 we prove more precisely 
that the condensation is entirely in the lowest energy state, i.e., Pm= Pc. in 
the terminology of ref. 2. In Section 6 we consider the Bethe approximation 
to the boson lattice gas pressure using the random walk representation. We 
find that it differs from the Cayley tree result in that the single-particle 
spectrum is continuous, as opposed to the spectrum of the Laplacian on 
the infinite Cayley tree, which is a dense point spectrum. Both exhibit 
boson condensation, however. The situation is therefore different from the 
Ising model, where the Bethe approximation exhibits a phase transition, 
whereas the model on a Cayley tree does not. (3) 

2. DESCRIPTION OF THE M O D E L  A N D  ITS S P E C T R U M  

Le t / ' q  be an infinite homogeneous tree of degree q >~ 3. We can choose 
an arbitrary point of the tree as a root point, which we denote as 0, and 
introduce a coordinate system on the tree by labeling the rest of the 
vertices of Fq with (k; il,..., ik), where k = 1, 2 .... is the distance from the 
root and il = 1, 2 , . ,  q and i~ = 1, 2 ..... q -  1 (k ~> 2) denote the branch to be 
taken at the first, respectively kth, junction. We also introduce the finite 
Cayley ball Fq u of radius N about the root chosen: it is the finite subgraph 
of Fq spanning all the vertices (k; il ..... ik) with k ~< N. The set of vertices of 
Fq and F u will be denoted by Vq and Vq u, respectively. The number of 
vertices of F u is given by 

I VNI _ q(q-  1) N - -  2 (2.1) 
q - 2  
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The Laplacian A on  [2(Vq) is a bounded selfoadjoint operator with matrix 
representation 

l k k 

A(k;il,...,ik),(l;jl,.-.,Jl)=6k, l+l ~I  ~ir,Jr'~6k-t-l,l ~ 3~,j~-qb~,l [I 6~,j~ 
r = l  r = l  r = l  

(2.2) 

It is well known (ref. 8, p. 225) that the spectrum of - A  is the set 

s p e c ( - A )  = [ q -  2 ( q -  1) 1/2, q +  2 ( q -  1) 1/2] (2.3) 

The Dirichlet Laplacian A N o n / 2 ( V  N) is the bounded self-adjoint operator 
represented by the I VNI • I VNI submatrix of (2.2) obtained by restricting 
(2.2) to k~< N and l<~N. The main result of this section is the following: 

T h e o r e m  2.1. The spectrum of - A  N is the discrete subset of 
given by {J~n,k;Nl r t =  1 ..... k,  k =  1 ..... N +  1), where 

r i t z  
~n,k;N : q -- 2(q-- 1) 1/2 cos k + 1 (n = 1,..., k; k = 1 ..... N) (2.4) 

and 

2n, N+ 1 ; N  = q - -  2(q - 1 ) 1 / 2  c o s  0n/2 (2.5) 

where 0n is the solution of 

= sin( ) t26, sin 1+  0n q - 1  

with 

0 < 0 1 <  ' ' '  <0N+l<27r  (2.7) 

The corresponding multiplicities are given by 

i ( ! - - 2 ) ( q - - 1 ) U  k 1 if l<<.k<~N--1 
mk= 1 if k = N  

if k = N + l  

(2.8) 

In this section we shall prove this theorem by a direct iteration argu- 
ment. In the next section we give an alternative derivation (for a Cayley 
tree with root) using a random walk representation of the free fermion gas 
with Laplacian A N. 



310 van den Berg e t  al. 

We prove Theorem 2.1 here by the usual method of putting 
det(21 - A  N) = 0. For  iteration purposes we generalize this determinant and 
define the matrix 

MN(20,'", 2N;  f l  , ' " ,  fN)(k ;  i1,..., ik),(l;jl,...,Jl) 
k l k 

=2k(~k,l ~I (~ir,Jr'~-fk(~k,l+l I~ (~ir,Jr--6k+l,l H Oir,jr 
r = l  r = l  r = l  

with determinant 

(2.9) 

DN(2O ..... 2N;  f l  ,---, f N )  = d e t  MN(2 o ..... 2N; f l  ,'", fN)  (2.10) 

We then have the following result. 

L a m i n a  2.1. The determinant (2.10) is given by 

DN(20 ..... 2N; f l  ,'", fiN) 
N + I  

= 1-I {f(km(2u k+~ ..... 2N;fN--k+2 ..... fN)}  mk (2.11) 
k = l  

where the functions f~u) are defined by 

f(om= 1, u~N~(2) = 2 (2.12a) 

f(N) t~ -- 2 ~c(N)[~, 2k; f2 ..... f k )  k + l t " 0  ..... 2 k ; f l , ' " , f k ) - -  OYk \~1,'", 

+(q- -1 ) f l f ( kN)1 (22 , . " ,2g ; f3  ..... f k )  (2.12b) 

and 

f (u) / 2 2 N ; f l  ..... fN) = 20f(NU)(2~ ..... 2N;f2  ..... fN) N + l t  0 , ' " ,  

+ qf l  f(NN- ) 1(2a, '' ', 2N; f3 ..... fN) (2.12C) 

[-The multiplicities m k are given by (2.8)]. 

Proo[. We use induction on N. For  N = 0  we have obviously 
Do(2o) = 2o = f~~ For  N =  1 we can compute D1 as follows. We multi- 
ply the first row (k = 0) by 21 and then add to it the q rows with k -- 1. This 
yields 

2 1 D 1 ( 2 0 ,  21 ; f l )  = 2q(2021 -+- qf l )  = 21 f ~ t ) ( 2 1 )  m' f(21)(20, 21 ; f l )  

The induction step proceeds similarly. We multiply the rows with k = N -  1 
by 2N and next add to each row with index ( N - 1 ; i l  ..... iN 1) the q - - 1  
rows with indices (N; il,..., iN_ 1, J), where j =  1,..., q - -1 .  In the resulting 
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determinant the - l's in the columns with index (N; il,..., iN_ I,  J) ,  J = 1 ..... 
q - 1 ,  have been replaced by zeros and the diagonal entries in columns 
( N -  1; il ..... i~_1) have changed to 

~N- -1  = • N  12N "~- ( q -  l) ,[/N (2.13a) 

while the entries #N-~ in the columns ( N - 2 ;  is,..., iN-2) have changed to 

~ N - -  1 = *~N#N--  1 (2.13b) 

We conclude that, for N~> 2, 

q(q 1)N-2/)  { J  /~N; #1  f iN)  N UN\+~O ~'", ~'", 

~ _ ~ q ( q - - i ) N - I F )  ( ]  ~ N _ _ 2 , ~ N _ _ I ,  "~N a~ N-- 1 ~f~0 '""  ' # i  ..... /~N--2 ,  ~ N - -  1) 

The lemma now follows from the observation that for N ~> 2 and 1 ~< k ~< N, 

f(k N- 1) ( ) ' 0 , ' " ,  '~~ --2 ,  "~k --1 ; /'/1 ..... /Ak --2,  ]~k - i  ) 

- r(N) t~ 2k; tq , . . . ,  ttk) ( 2 . 1 4 )  - -  J k  + l~,r~0 ' ' ' '~ 

and the fact t h a t m ~ = q ( q - 2 ) ( q - 1 )  N : = q ( q - 1 )  N - ~ - q ( q - l )  N-2. | 

Proof of  Theorem 2.1. It follows from Lemma 2.1 that the eigen- 
values of - A  N are given by q - t h e  zeros of the functions fk(2) defined 
recursively by 

f(oN)= 1, fin)(2)----- 2 (2.15a) 

f~ (2 )=) f ( kN) (2 ) - - (q - -1 ) f ( kN)~  for l<~k<~N (2.15b) 

and 

f(NN)+ ~( 2 ) ---- 2f(Nm( 2 ) -- qf%N) ~(2) (2.15c) 

They occur with multiplicities given by mk. Notice that fk(2) is of order k, 
hence has k zeros, and 

N +  1 q(q - -  1 )N  - -  2 

Z kmk = -- ]V~] (2.16) 
k=l q - 2  

as it should be. It remains to show that the zeros of fk(iQ are of the form 
q -  )~n,k;N, where "~n,k;N is of the form (2.4), respectively (2.5). This can be 
seen by transforming to new variables; if we define 

jTk(x ) = (q - 1)-k/2fk(2(q -- 1) z/e X) (2.17) 
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then the transformed functions satisfy (for k ~< N -  1) 

fo(x) = 1; 371(x) = 2x; .~k+,(X)=2X~Ck(x)--fk_l(X) (2.18) 

One recognizes the Chebyshev polynomials of the second kind(~~ 

sin(k+ 1)8 
jTk(cos 8) - (2.19) 

sin 0 

for k<<.N. There is an exception for k = N +  1, in which case 

j N7+ I(cos O) = 2 cos O sin(N + I )O q sinN0 (2.20) 
sin0 q--1 sin0 

Changing 0 to 8/2, one obtains the relation (2.6). | 

3. R A N D O M  W A L K  EVALUATION OF THE S P E C T R U M  

This section is devoted to an alternative derivation of the spectrum of 
the Dirichlet Laplacian on the Caley tree. It is based on the Feynman-Kac 
formula for the free fermion gas. Using this formula, we shall obtain a 
random walk formula for the partition function of the free fermion gas: 

lnZf(fi, #)=~miln(1 + e  p(~ ;-i)) 

from which we can read off the spectrum {2i} and the multiplicities m i. In 
Section 6 we shall show that this method can also be used to obtain the 
Bethe approximation to the spectrum and pressure of the free boson lattice 
gas. 

The grand canonical partition function of the free fermion gas is given 
by 

Z(fl, # ) =  ~.T ~' ~ sgn(~) 
n=O Xl,. . . ,XnE1 ~ ~ESn  

X (X~z(1) , . . .  , x=(,)l e ' ( ~ ' -  ~~ Ix1,..., x , )  (3.1) 

Here F is an arbitrary finite lattice, the angle brackets denote the inner 
product in 12(F'), Ixl ..... x , )  is the state 3x1| ""  |  and 

~ , = -  ~ d (k) with d ( ~ ) = l |  ... | 1 7 4  --. |  (3.2) 
k = l  

Now -5~,  is the generator of n independent random walks, so that 

(X7c(1),--., X.(n) I e -~'~" Ix~ . . . . .  x . )  = P x I  . . . . . . .  (~i(fl) = X.(i) Vi) (3.3) 
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Using the Markov property of random walks, it follows that if two random 
walks starting at xi and xj meet, then the corresponding probability equals 
the probability with indices i and j interchanged. We may therefore assume 
that no two random walks intersect and obtain 

Z(fl, #) = n! ~ ~ sgn(~z) 
/ ' l = 0  X l , . . . , X n ~ ]  ~ ~ z ~ S  n 

• Bzx, ....... (~c > fl, ~e(fl) = x,~i~Vi) (3.4) 

where ~ is the first collision time. Next we approximate the continuous- 
time random walks by discrete-time random walks. We construct an 
augmented lattice L,e consisting of M copies of the lattice F and consider 
random walks of the following kind: A random path consists of a sequence 
of links bl, bz,..., where each link b~= ((x~, mi), (x;, m;)) satisfies m;= 
m~ + 1 and either x; and x~ are connected by a line in F or x; = x~. (In any 
case, x~+~=x; and m~+~=m;.)  Links of the first type we call diagonal, 
those of the second kind vertical. To each diagonal link we ascribe a weight 
factor ~b = filM and to each vertical link a weight factor r = 1 -  qfl/M, 
where q is the coordinate number of the lattice. It is now easy to see that 
this discrete walk tends to the continuous-time Poisson random walk on F. 
Indeed, 

m~(~, = y) = ~ Nk(x -+ y) pk(t) (3.5) 
k = ] y  - -  x l  

where Nk(x ~ y) is the number of paths in f '  from x to y, and pe(t) is the 
probability that there are k jumps in the time interval (0, t). Similarly, we 
have for the discrete-time random walk, 

M 

PxM(~, = y ) =  ~. Nk(x --+ y) p~t(t) (3.6) 
k = l y - -  x l  

Now, 

and 

t k 

pk(t) : ~.) e ' (3.7) 

P~ ( t ) = (1-- fl/ M)EtM'r ~ ( [ tM/fl ] ) (fl/ (3.8) 

so that pk(t)= limM~ ~ p~(t )  and hence 

Px(~, Y) lira M = = Px (~, = Y) (3.9) 
M ~ o o  



314 van den Berg e t  al. 

Using this result for each of the random walks in (3.4), we can write 

. ~-. e ~ n  

Z(~, ] / )= 21n'lo~ n.r 0 ~ E E sgnO r) 
= . X l , . . . , x  n r r E S n  

x pM ....... (% > fl, ~i(f l)  = X=u)Vi) (3.10) 

Next we can write the permutations ~ as a product of cycles x = C l . . . c  r.  

The sign of rc is then given by sgn( rc )=H r sgn(c/) and sgn(cs)= i=1 
( _  1)tc~l + 1, where ]c~] is the length of the cycle. The collection of paths ~ 
then decomposes into a collection of c l o s e d  nonintersecting paths on 
the augmented lattice with periodic boundary conditions in the vertical 
direction. Thus we can write 

Z(/3, #) = ~ Z(V) (3.11) 
y 

where the sum runs over all possible collections of closed, nonintersecting 
paths on the augmented lattice with periodic boundary conditions in the 
vertical direction, and 

;~()') = H oh(P) (3.12) 
Pey 

with 

oh(P) = --qSbhO b~ (3.13) 

where b h and b~ are the numbers of diagonal and vertical links, respec- 
tively, and r and tp are now given by 

f l  e ( f l , u  + i rc ) /M 

(3.14) 

~ = ( 1 - - ~ )  e (r + i~ ' /M 

[We have inserted a factor e au/M in the weights r and ~ to account for the 
factor e r in Z(fl,#). Notice that H ~ = l s g n ( c i ) = ( - 1 )  "§ The factor 
( - 1 )  r is given by the - sign in (3.13); the factor ( - 1 )  n is given by the 
factors e i'~/M in the definition of r and 0-] 

The expression (3.1t) can be evaluated along the lines of ref. 9 using 
the following graph-theoretic result, proved in refs. 5 and 6: 

T h e o r o m .  The following equality holds: 

)~(7) = H '  [1 + oh(P)] (3.15) 
7 P 
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where the sum runs over all collections of closed nonintersecting paths ?' 
and the product is taken over all possible nonperiodic closed paths P. 

It follows from this theorem (9) that 1 n Z(/7, #) is given by 

In Z(/7, # ) =  - ~ '  ~ [-(D(P)]J 
P j = I  J 

~ co(P(z, b)) (3.16) 
z ~  b b 

where co(P(z, b)) is the weighted sum over all possible closed paths of b 
bonds starting and ending at the site z =  (x, m)e  LP. In the last identity of 
(3.16) we have used the fact that the product [oh(P)] j of j identical non- 
periodic paths P can be interpreted as the weight of a path of periodicity j. 
Thus, the evaluation of the partition function of discrete Fermi trajectories 
on 5(' is reduced to finding the sum Zb [m(P(z, b))/b]. The latter Sum can 
be expressed easily through a generating function of random walks on the 
lattice F. The generating function W(x, Xo) of random walks between sites 
Xo and x (Xo, x s F) is defined recursively by- 

Wo(x, Xo) = 6x xo 
' (3.17) 

W/x, xo)=Owj l(X, Xo)+(J wj i(x',Xo) 
Ix '  x l  = 1 

and 

W(x, Xo)= ~ Wj(x, Xo) (3.18) 
j = O  

W(x, Xo) represents the probability that the walk starting at Xo will arrive 
at x after an arbitrary number of steps. It is easily seen that the sum 
Zb [~o(P(z, b))/b] can be obtained from W(x, x) by two successive trans- 
formations: W(x, x) ~ lTV(x, x) ~ VV(x, x). The first transformation divides 
each term of W(x, x) by the number of steps: 

VV(x, x) = ~, Wj(x, x) f~ W'(x, x ) -  1 dt (3.19) 
j>~l J t 

where W' is obtained from W by replacing ~b and ~b by t~b and tO, respec- 
tively. The second selects the paths of length j =  Mk, where ki> 1 is an 
integer. Using the identity 

1 M 

Y, e2"| Z kM 
p = l  k ~ Z  
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we get 

We have 

1 ~ W~(x, x) with c~ = e 2€ (3.20) i f Ix ,  x) = 
p=l 

co(P(z, b)) i f(x,  x) (3.21) 
b b 

where x is the first coordinate of the site z = (x, m). 
The generating function of walks on the Cayley tree is related to the 

generating function of one-dimensional walks on the interval [0, N] as 
follows (for simplicity we consider a Cayley tree with root, i.e., the point 
0 is connected to q -  1 others, instead of the homogeneous Cayley tree con- 
sidered in Section 2; this does not change the formula for the pressure in 
the infinite-volume limit): The generating function for a biased one-dimen- 
sional walk on [-0, N] with weights given by ( q -  1)~b for steps from n to 
n + 1 and ~b for steps from n to n - 1 and ~ for staying at the point n in 
the case of closed walks is the same as that of an unbiased walk with 
weights ~b(q-1) m and ~, which is given by [see ref. l l ,  ChapterV; 
mN(n ) = gu(n, n)] 

2 x-'N sin2[(k + 1)(n + 1)~/(N+ 2)] 
WN(n ) ( 3.22 ) 

N + 2 kL'__o 1 -- ~k -- 2~b(q - 1 ) 1/2 cos [- (k + 1 ) rc/(N + 2) ] 

If n o w  WN(n , l) is the generating function of the subset of one-dimensional 
random walks on r0, N] with min(n)= l, then 

WN(n, l) = W N_ l(n -- l) -- m N _ l - -  1 ( M  - -  l - 1 ) (3.23) 

while each walk contributing to WN(rt, l) corresponds to ( q -  1)" ~ walks 
on the Cayley tree contributing to W(x, x). Hence 

I "~=i (q - -1 ) - - "+t [WN_, (n - - l ) - -WN , l (n - - l - -1 ) ]  

W ( x , x ) =  l= + WN ,(0) (3.24) for n = 1, 2,..., N 

Wu(0 for n = 0  

Now we must perform the transformations W--. if/__. ~ W. The first yields 

VIZN(X'X)= T N+-2 k~0 (1 - t2k)- 1 sin2 ~+--2 g (n+  1 ) -  1 

_ 2 ~ sin2( k + l  ~ ( n + l )  l n ( 1 - 2 k )  (3.25) 
N + 2 k =  o \ N + 2  
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We have put 

k + l  
2k = ~ + 2~b(q- 1) 1/2 cos ~ rc 

Inserting (3.14), we have 

[~ + 2~b(q - 1) 1/2 cos O] M 

- exp{ f l [#  - q + 2(q - 1) 1/2 cos 0] } 

Thus we obtain 

as M ~ o e  (3.26) 

N Fk+, ] 
WN(X, X) = 2 ~ sin 2 n(n + 1) 

M ( N +  2) [_N+2 k = 0  

where we have written 

k + l  
(3.27) 

(m) 
2 = q - 2 ( q - 1 ) l / 2 c o s - -  (3.28) 

n 

Taking into account that the number of lattice points with coordinate n is 
( q -  1 )n, we can write Eq. (3.22) in the form 

N 

In Z(fl, #)= - M  ~ ( q -  1) n ff/(x, x) (3.29) 
n = 0  

where W(x, x) follows on substitution of (3.27) into (3.24). We can now 
obtain an explicit form for In Z(fl, #) by a straightforward but tedious 
calculation: 

N { 
l n Z ( f l , # ) = - M  ~ (q--1)~ ~N-~(O) 

n = l  

" l YvN , ( ~ - z ) - ~  ,~(~-Z-1)}_M~(O ) + ~ - 
t=o ( q _  1)n t 

= -M(q -- 1 )N Wk(O) 
k 0 ( q - - l )  k 

+ k=l ~u m=l ~ 17Vk(m)--lTVk-l(m--l)}-(q~-~[~ (3.30) 
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We obtain finally 

N + I  1 

lnZ(fi, P ) = ( q - 2 ) ( q - 1 )  N ~ )4 
4=1 ( q - 1  

x ~ In l + e x p f l  p - 2  
m ~ l  ' 

+ In l + e x p f l  # - 2  
q - l m = l  

(3.34) 

We can now read off the spectrum of - A  u on the Cayley tree with root: 
it has the form 

mT~ 
2m, k=q--2(q--1)l/2COSk+l, k =  1,..., N +  1, m = 1,_., k (3.35) 

with multiplicities 

m~ = ( q -  2)(q - 1) N-k  

' 1 m N +  1 = 

for k = 1,..., N 
(3.36) 

Notice that only •n,N+l differ from the eigenvalues computed in 
Theorem 2.1 for the homogeneous Cayley tree. The spectrum (3.35) can 
also be derived by the method of Section 2. 

4. E X I S T E N C E  OF C O N D E N S A T I O N  IN THE  
T H E R M O D Y N A M I C  L I M I T  

In this section we prove the existence of the thermodynamic limit for 
the free boson gas on the Cayley tree. Next we prove that this gas exhibits 
generalized boson condensation in the sense introduced by GirardeauJ 4) In 
the following section we shall prove that the condensation is actually into 
the ground state only, i.e., Pc = P,, in the sense of ref. 2. 

We denote the finite-volume ground state by 21(N), i.e., 

),I(N) = min{2n, k;N In = 1 ..... k; k =  1,..., N +  1} (4.1) 

It follows from Theorem 2.1 and Theorem 3.1 that for both Cayley trees 
considered, 

tim 21(N ) = q -  2(q - 1) 1/2 (4.2) 
N ~ o o  

822/69/1-2-21 
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Next we define the single-particle partition function as in ref. 2: 

~N(/~) = I vNI 1 trace exp{fl[A u + 21(N) 1 ] } (4.3) 

We shall define the pressure PN(/A) by 

exp[fl ]V N] p,(/A)J = L e"~" E 
n - O  {n(k)>~Ol~2n(k)--n} 

x exp{ - f l  L n(k)[2k(N)-21(N)] } (4.4) 
k = l  

where 21(N) < 22(N) ~< 23(N) ~< .-- are the eigenvalues of - A  s in 
ascending order and including multiplicities. [By subtracting the ground- 
state eigenvalue we have renormalized the chemical potential; thus, the 
thermodynamic limit is defined for /AE ( - 0 %  0).] It was proven in ref. 2 
that whenever the limit r = lim u ~ o0 CN(] ~) exists for all f le  (0, oo ) and 
is nonzero for some fle (0, oo), then: 

1. The limit p(/A)= limN~ ~ p~/(/A) exists for all /A E ( - o o ,  O) and is 
given by 

tiP(#) = leo, ~) ln(1 - e~(" - x)) -1 dF(2) (4.5) 

where the density of states dF(2) is defined by 

r = leo, ~) e-B~ dF(2) (4.6) 

. If/AN(p) is the unique root of the equation 

d 
T = p a/A 

(4.7) 

then the limit #(p) = limN ~ ~ ]IN(p) exists for all p e (0, ~ ); it is the unique 
root in ( - 0% 0) of the equation (did~A) p(/A) = p for p < Pc and/A(p) = 0 for 

P>~Pc. 
Here, the critical density Pc is given by 

f dF( Z ) 
Pc = ,j (4.8) 

[o, ~) e ~ - 1 
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3. The limit g ( p ) = l i m N ~ g u ( p )  
zr(p) = (pop)(p) .  

4. The double limit 

exists and is given by 

Vo(p) = lim lim ~o[t YUl-1 xN(;43 
2,[0 N --* oo 

(4.9) 

exists and is given by 

Vo(p) = (p - Pc) + (4.10) 

where (x) + stands for the positive part of x. Here Ep denotes the grand- 
canonical expectation at mean density p, and XN(2 ) = ~2k: 2N(k)<~. n(k). 

We say that generalized condensation occurs if Vo(p)> 0 for some p, 
i.e., if Pc < oo. We shall now prove that the condition on the existence of 
~b(/~) is satisfied in our model. 

L e m m a  4.1. For / ~ > 0  and q = 3 , 4  ..... the limit ~b(/3)= 
limN~ ~ ~bN(/?) exists and is given by 

k 

~b(/~)=(q-2)  2 ~ Z ( q - 1 ) - k  
k = l  n = l  

x e x p [ - 4 f l ( q - 1 )  1/2 " 2 n~ ] sm 2-k--~ J (4.11) 

Proof. By Theorem 2.1 and formula (2.1), 

q :  
q~N(f l )-q(q~-l)  ~ -  2 1 

k 
mk e fl(J-n,k;N--Al(N)) 

n = l  

U+, } 
-~- 2 e--fl(An'N+I;N--21(N)) 

n = l  

(4.12) 

B u t  

lim q - 2 N + 1 
U~oo q(q-- 1)U--2 ~ e--~(2"'N+I;N 3"l(N))=0 

n = l  

and 

lim q - 2 N 
U~oo q(q-- 1 ) U - - 2  2 e--fl(2n'N;U A ' I ( N ) ) = 0  

n = l  
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so that 

~b(/3)= lim ~ q(q--2)2(q--1)x-k-1 
U - * o o  k = l  n = l  q(q--1) N-2 
x exp{ --/~[2n, k;N-- 21(N)] } 

N - - 1  k 

= lim ( q - 2 )  2 Z Z ( q - 1 ) - k - t  
N ~ o v  k = l  n = l  

x exp{ --fl['~n,l~;u-- )q(N)] } 

= ( q - 2 )  2 y' ( q - l )  ~-t 
k = l  n ~ l  

x exp [ -  4/~(q - 1)1/2 sin2 (2k@2) 1 | (4.13) 

To prove that condensation occurs, it is now sufficient to show that 
Pc < oe. This is the content of the following lemma: 

I .emma 4.2. For fl > 0 and q = 3, 4,..., 

_< rc2(4q 2 -  l l q + 8 )  (4.14) 
Pc= ~ O(lfl)"~24fl(q-- 1) 3'2 ( q - 2 )  

l = l  

ProoL By Lemma 4.1, 

~b(l]?) = ( q - 2 )  2 ~ 
l = 1  k = l  n = l  

( q -  1) -k-1 

k 

~<(q--2) 2 ~ • (q- - l )  - k - '  
k = l  n = l  

k 

~<(q-2) 2 ~ Y~ (q--1)-k-3/2(k+1)2n 2(4/~) 
k = l  n = l  

~<(q--2) 2 ~ ~ (q- - l )  k 3/2(k+l)an-2(4~)-i 
k = l  n = l  

(4q2 llq+8) ~2 
I (q - 1 )3/2 (q _ 2) 24fl 

(4.15) 
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Corollary. The boson lattice gas on a Cayley tree with coordina- 
tion number q ~> 3 exhibits generalized boson condensation. 

5. C O N D E N S A T I O N  I N T O  T H E  G R O U N D  S T A T E  

In order to prove that the condensation is in fact entirely into the 
ground state, we must estimate the distance between the ground state and 
the first excited state. For the ground state we have the following result. 

Lemma 5.1. ForN~>2andq>~3,  

21(N) =)o~.N+,;N (5.1) 

and the following estimate holds: 

).l(N)<~q-2(q- 1) 1/'2 cos ~ (5,2) 

Proof. It is clearly sufficient to prove the estimate (5.2). We must 
show that Eq. (2.6) has a solution in the interval (0, 2~z/(N+2)]. To this 
end, we define 

g ( 0 ) = s i n ( l + ~  N) 

Then g(0) = 0 and g'(0) > 0, while 

g q - 1  

. 

( NTc ~ < 0  
sin \ N  + 2]  

This implies that g(O) has a zero in the interval (0, 2~/(N+2)] .  | 

Similarly, for the first excited state we have the following result. 

Lemma ft.2. For N>~2 the first excited state is given by 

)~2(N)= 21.N;N=q-- 2(q--1)I/2 COS ( N ~ )  

Proof. We must show that 2*.N;N<22,N+l;,V, 
02 > 2Zc/(N+ 1). Now, for O<~rc/(N+2), 

N + 2  1 NO 
g(0)> 0 > 0  

~z q - 1 2  

(5.4) 

or equivalently, 



324 van den Berg e t  al. 

On the other hand, for ~/(N+ 2) < 0 < ~/N, cos(1 + N/2)O < 0, while 
cos(NO/2)>O, so that g ' (0)<0.  Moreover, for ~/N<O<2~/(N+2), 
cos(1 + N/2)O < cos(NO~2)< 0 because the function cos x is decreasing on 
(g/2, g). It follows that g'(O)< 0 for all 0 ~ (7~/(N+ 2), 2zc/(N + 2)), so that 
g has a unique zero in this interval. This implies that 02>2z~/(N+2). 
Finally, for 2~/(N+ 2) ~< 0 ~< 2~/N, sin(1 + N/2)O > 0, while sin(NO~2) < O, 
so that g(O) has no zero in this interval and O2>2~/N>2x/(N+ 1). ] 

Corollary. For N~>2, 

A2(N)-Al(N)~ (N+ 1) 3 (5.5) 

Proof. By (5.2) and (5.4), 

22(N) - 21(N) ~> 2(q - 1)~/2 cos - cos 

= 4 ( q -  1)In sin ( N +  1)(N+ 2) 

• s i n (  (2N+3)7~ "] 
\ 2 ( N +  1)(N+ 2)] 

>~ 4(q - 1) 1/2 2 N +  3 
( N +  1) 2 ( N + 2 )  2 

1 
~> 1 '--------5(N+ ) I (5.6) 

As in ref. 2, we now define a rescaled single-particle partition function 
by 

~X(fl) = trace exp{fl I VqUl [AN+21(N)I ]}  (5.7) 

We then have the following result. 

L e m m a  5.3 .  

lim 7N(fl)= 1 (5.8) 
N--*~ 

Proof. Since 21(N ) is an eigenvalue of - A  ~v, we have ~N(j~)~ 1. TO 
obtain the converse inequality, we express YU(fl) in terms of q~N(fl): 
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7U(fl) = Z exp{--fl  IVNt [2k (N) -21 (N)]  } 
k = l  

= 1 + ~ exp{ -f l ( I  VqU[- 1) [2k(N)- )~l (U)]  
k = 2  

- fl[2k(N) -- ~I(N)] } 

1 
~< 1 + i-~uN] exp{--fl(] VqUl- 1)[22(N)-21(N)]}  ON(fl) (5.9) 

But, by (5.5) and (2.1), 

1 
lim exp{-f l ( ]  VNF- 1 ) [22 (N) -  21(N)] } = 0  

so that lim SUpN~ ~ YN(fl) <~ 1. | 

We also need an estimate on the other eigenvalues: 

k e m m a  5.4. For k = l , . . . , N - 1  and n = l  ..... k the 
inequality holds: 

N - k  
2 n , k ;  u - -  21(N) ~> Nk 2 (5.10) 

following 

Proof. As in the proof of the Corollary of Lemma 5.2, we have 

~ . , k ; N  - -  3~1(N) /> ~ l , k ; U  - -  22(N) 

= 2 ( q -  1) 1/2 cos - c o s  

~>4(q 1) ' / 2 ( N - k ) ( N + k + 2 ) -  N - k  
- - - - ~  . . . .  ~ - -  I ( N + I )  ( k + l )  2 Nk 2 

k e m m 8  5.5. Let the maximum density in levels above the ground 
state be defined by 

P m :  lim sup t vNI -1 ~ (efl[;~k(N) )q(N)] __ I ) - - 1  
N ~ c o  k = 2  

Then Pm= Pc" 

Proof. By Lebesgue's dominated convergence theorem, 

Pc= l im lim I vNI 1 
t:.~0 N ~ o o  

( 5 . 1 1 )  

• ~ ( e ~ [ ; . k ( u ) -  ~I(N)]  - -  1 ) -- 1 

{k >~ 2 i ;.k(N)--,h(N) ~> ~} 
(5.12) 
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Hence it is sufficient to show that 

lim sup lim sup I vNI =1 
aJ. 0 N ~  

• E (efl[&(N))~(U)3 __ 1 ) -  l = 0 

{k m~ 212k(N)-- 21(N) < s} 
(5.13) 

The contribution to this expression of the terms with 2k(N)=2n.N; N o r  

2k(N) = ;t,,u+ 1;U is bounded above by 

1~" N L 1  N ( q -  1) } 
I VNq l -  [ e  f l [ ) ' 2 ( N ) - ) ' l ( N ) j -  1 ~-e f l [ 2 2 ( N ) - 2 f f N ) ] -  I (5.14) 

and hence tends to zero. The contribution of the remaining terms can be 
bounded with the help of Lemma 5.4 as follows: 

-1 xs q ( q - 2 ) ( q -  1) N-k-1 
IVUl E /_., 

{k <~ N-- 1 [ 2n, k;N-- )%(N)<g } n= 1 

<~ ] VN] -~ Z k q ( q - 2 ) ( q -  1) u -k  1 

{ k ~ N  1 I(N k)/(Nk2)<a} e f l (N-k)/(Nk2) - -  1 

<~ Z kq(q_2)2(q_l )N-k  1 Uk 2 (5.15) 

{ k ~ N  I [ ( N  k)/(Nk2)<e} q(q-1)  u - 2  f l (N-k )  

Hence 

i q ( q - 2 ) ( q -  1)N k-~ 
lira sup I vNI -~ ~ e~-s ~&T--- ~- 

N ~ o o  {k<.N-- I [ 2n, k;N--)d(N)<e} n = l  - -  

~< (q-Z)Zf1-1 ~ (q--1)-k-~k 3 (5.16) 
{k I k - Z < e }  

The result now follows from the convergence of the latter series. | 

Coro l l a ry .  In the free boson lattice gas on a Cayley tree the 
condensation is entirely into the ground state, i.e., 

v , ( p )  = V o ( p )  = ( p  - p c )  + (5.17) 

6. THE  BETHE A P P R O X I M A T O N  

It is well known that, for the Ising model, the Bethe approximation to 
the free energy does not agree with the exact expression for this model on 
a Cayley tree. (3) In fact, the former exhibits a phase transition, while the 
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latter does not. We have seen that  in the case of the free boson  lattice gas 
on a Cayley tree there is a phase  transition. We shall see that  there 
nevertheless is a difference between the exact model  and the Bethe 
approx imat ion ,  which manifests itself here in the fact that  the lat ter  turns 
out  to have a cont inuous  spectrum, as opposed  to the exact model,  which 
has a dense discrete spectrum. The  Bethe approx ima t ion  consists in an 
identification of all sites of  the Bethe lattice which can be considered as an 
infinite Cayley tree. This means  that,  instead of the sum (3.16) over all 
lattice sites z ~ Y ,  we must  take only the term Z b  [co(P(0, b))/b], where 
co(P(0, b)) is the generat ing function of all possible closed paths  of b bonds  
on the infinite lattice. In  other  words, we must  chose in Eq. (3.24) the 
start ing point  n infinitely remote  f rom the left and right side of the interval 
[0, N ]  as N ~ oe. In  this case (3.24) becomes 

W(x,x)=Wo~(O)+ ~ ( q - 1 ) - ' [ W ~ o ( l ) - W ~ ( l - 1 ) ]  (6.1) 
l=1 

where W~(l) is the generat ing function for one-dimensional  closed walks 
start ing at the site l on the semi-infinite lattice 0, 1, 2 ..... The expression for 
W~o(l) is a limit of (3.22): 

W~(I) =-l fo2Sin2(l+ l)O 
1 - 2(0) dO (6.2) 

with 
2(0) = 0 + 2~b(q - t )  v~ cos 0 (6.3) 

Substi tut ing into (6.1), we get 

W ( 0 , 0 ) = 2  ~ ~sinZ(l+l)O-sin2lO dO 
- Jo  7"Cl= 0 

2 f o q ( q - 1 )  sin20 1)2dO (6.4) 
= -~ -1--- ~ l - 2( q - 1 )  cos 20 + ( q - 

where we have used the identity 

~ x  l cos 10 - (6.5) 
1 0 X cos 

t = 0 1 -- 2x cos 0 + x 2 

The t ransformat ions  W ~ I~ ~ ffz are analogous  to the ones per formed in 
Section 3, so we simply state the result for the fermion gas pressure: 

2q(q - 1 ) .If sin 2 0 
PY(fl) = ~ -  -~ 1 - 2(q - 1) cos 20 + (q - 1) 2 

x ln(1 -[-e B[l'-q+2(q-1)l/2c~ dO (6.6) 
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We see from this formula that the spectrum is continuous,  in contrast  with 
the exact model. For  the pressure of  the boson  gas in the Bethe approxima-  
tion we infer 

p(#)- 
2q(q - 1 ) ( -  sin 2 0 

rt/~ Jo 1 - 2(q - 1 ) cos 20 + (q - 1 )2 

x ln(1 - - e  fl[#-2(q-1)l/2(1 cosO)]) dO (6.7) 

where we have again renormalized the energy scale so that # ~ ( - ~ ,  0). It 
is easily seen that  the density of  states behaves as dF(2) ,~ 2 d2 as 2 ~ 0, so 
that  

Pc 
2q(q - 1 ) r ~ s i n  2 0 

r~ J0 1 - 2(q - 1 ) cos 20 + (q - 1)2 

dO 
x < ~ (6.8) 

e 213(q 1)1/2 (1 - c~  ~ - -  1 

The Bethe approximat ion  therefore also exhibits generalized condensation. 
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